SHORT STRUCTURAL PAPERS

Papers intended for publication under this heading must be in the format prescribed in Notes for Authors. Acta Cry'st. (1978). A34. 143157.

Acta Cryst. (1981). B37, 218-220

Structure of Tellurium(IV) Pyrosulphate

By Frederick W. Einstein and Anthony C. Willis
Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6

(Received 7 June 1980; accepted 10 September 1980)

Abstract

Te}\left(\mathrm{S}_{2} \mathrm{O}_{7}\right)_{2}, M_{r}=278.84\), monoclinic, Cc , $a=10.604$ (4), $b=8.524$ (3), $c=12.052$ (4) $\AA, \beta=$ $102.20(3)^{\circ}, V=1064.8 \AA^{3}, Z=4, D_{c}=2.99 \mathrm{Mg}$ $\mathrm{m}^{-3}, \mu(\mathrm{Mo} K a)=3.01 \mathrm{~mm}^{-1}$. Final $R=0.038$ for 909 diffractometer reflections. Two bidentate pyrosulphate ligands are bonded to each Te atom. The Te atom is in a ψ-trigonal-bipyramidal configuration with a lone pair at one of the equatorial positions. Distances and angles are $\mathrm{Te}-\mathrm{O}(\mathrm{ax})=2.06(2), 2.07(1), \mathrm{Te}-\mathrm{O}(\mathrm{eq})=$ 1.96 (1), 1.96 (1) $\AA, O(a x)-\mathrm{Te}-\mathrm{O}(\mathrm{ax})=157.4$ (3), $\mathrm{O}(\mathrm{eq})-\mathrm{Te}-\mathrm{O}(\mathrm{eq})=94.8(5)^{\circ}$.

Introduction. Elemental Te was dissolved in oleum under dry N_{2}. The solution was allowed to stand for several months during which time pale-yellow crystals of $\mathrm{Te}\left(\mathrm{S}_{2} \mathrm{O}_{7}\right)_{2}$ were formed. One large crystal was removed from the solution in a dry box filled with N_{2}, cleaved and the fragments sealed in Lindemann tubes.

Weissenberg and precession photographs taken with $\mathrm{Cu} K(r$ radiation on the best-formed fragment showed it to be suitable for data collection. Systematic absences $h k l: h+k=2 n+1, h 0 l: l=2 n+1$ indicated space group C2/c or Cc.

Cell dimensions were obtained by least squares from the setting angles of ten reflexions with $2 \theta>44^{\circ}$ centred on a Picker FACS-1 four-circle diffractometer with Mo $K \alpha_{1}$ radiation ($\lambda=0.70926 \AA$). The intensities of 947 unique reflexions with $2 \theta \leq 50^{\circ}$ were measured and of these 909 with $I>2 \cdot 3 \sigma_{I}\left(\sigma_{I}\right.$ is the e.s.d. derived from counter statistics and a precision factor of 0.03) were regarded as observed and used in the analysis. A temperature of 295 K was maintained throughout the data collection. Operating conditions were a scan rate of $2^{\circ} \mathrm{min}^{-1}$, a scan width of $(1.2+$ $0.692 \tan \theta)^{\circ}$ and background counts of 10 s at each side of every peak. After every 75 reflections two standards were measured. These showed a small gradual decline in average intensity; the data were
scaled accordingly. A spherical-crystal absorption correction ($r=0.18 \mathrm{~mm}$) was applied (International Tables for X-ray Crystallography, 1967).
The structure was solved by direct methods in $C 2 / c$. Full-matrix least-squares refinement of an orderedatom model with anisotropic temperature factors for all atoms gave $R=\sum| | F_{o}\left|-\left|F_{c}\right| V \sum\right| F_{o} \mid=0.087$. A difference map at this stage suggested that $O(5), S(6)$, $O(7)$ and $O(8)$ were each disordered over two sites. This model [Te, S atoms, and $\mathrm{O}(9)$ anisotropic] refined to $R=0.040$, but gave an unreasonably short $\mathrm{O}(7 B) \cdots \mathrm{O}\left(7 B^{\prime}\right)$ contact of 2.06 (5) \AA.

Refinement was continued in $C c$, removing the molecular twofold symmetry. Disorder was found in one ligand but not the other. In ligand (1) $\mathrm{O}(15), \mathrm{S}(16)$ and $\mathrm{O}(17)$ indicated occupancies for the skew-boat and chair conformations of 0.55 and 0.45 , respectively, but $O(18)$ gave 0.33 and 0.67 .
There are two explanations which could fit these observations. Firstly, the variation in occupancies might reflect unresolved inter-parameter correlation together with systematic errors in the data. Alternatively there could be an ' $\mathrm{O}_{2} \mathrm{SOSO}_{3}$ ' species, a new isomer of the dithionate ion, disordered with $\mathrm{O}_{3} \mathrm{SSO}_{3}$ in ligand (1) sites. We believe that the latter is less likely as the feature is confined to only one of the four S atoms and non-bonding contacts to $\mathrm{O}(18 A)$ are not unusually short. We therefore decided to set the occupancies of $O(18 A)$ and $O(18 B)$ to 0.55 and 0.45 , respectively, and to fix U for $O(18 A)$ at $0.036 \AA^{2}$.
$\mathrm{Te}, \mathrm{S}(12), \mathrm{S}(22)$ and $\mathrm{S}(26)$ were assigned anisotropic temperature factors in further refinement which converged to $R=0.038$ and $R_{w^{\prime}}=\mid\left(\sum w\left|F_{o}\right|-\left|F_{c}\right|\right)^{2} /$ $\left.\sum F_{\rho}^{2}\right]^{1 / 2}=0.049$. The largest peaks in a final difference map [all <0.43 (11) e \AA^{-3}] were grouped about the Te atom. A negative region of -0.38 (11) e \AA^{-3} was found near $\mathrm{O}(18 A)$ but is sufficiently small that we did not think it justified changing our treatment of $\mathrm{O}(18 A)$. A

[^0]Table 1. Positional and thermal $\left(\times 10^{3} \AA^{2}\right)$ parameters for $\mathrm{Te}\left(\mathrm{S}_{2} \mathrm{O}_{7}\right)_{2}$

The least-squares e.s.d.'s of the least significant figures are given in parentheses. In the disordered region A-type atoms have occupancy $0.55, B$-type 0.45 .

	x	y	z	U
Te	0.5000	0.44151 (6)	0.2500	15*
O(11)	0.4489 (15)	0.3973 (20)	0.0786 (13)	23 (3)
S(12)	0.4425 (6)	0.2528 (7)	0.0061 (6)	24*
O(13)	0.3557 (17)	$0 \cdot 1331$ (22)	0.0316 (15)	49 (5)
$\mathrm{O}(14)$	0.4384 (13)	$0 \cdot 2924$ (17)	-0.1044 (12)	31 (3)
$\mathrm{O}(15 A)$	0.5871 (17)	$0 \cdot 1758$ (25)	0.0520 (16)	11 (4)
$\mathrm{O}(15 B)$	0.6088 (22)	0.2253 (31)	0.0399 (18)	21 (5)
$\mathrm{S}(16 A)$	0.6910 (7)	$0 \cdot 2344$ (9)	$0 \cdot 1481$ (7)	9 (2)
$\mathrm{S}(16 B)$	$0 \cdot 6510$ (6)	$0 \cdot 1483$ (8)	$0 \cdot 1740$ (5)	14 (I)
$\mathrm{O}(17 A)$	0.7671 (19)	0.0893 (27)	$0 \cdot 1973$ (17)	17 (4)
$\mathrm{O}(17 B)$	0.5724 (21)	0.0363 (25)	0.2091 (18)	26 (4)
$\mathrm{O}(18 A)$	0.7383 (24)	0.3741 (31)	$0 \cdot 1120$ (21)	$36 \dagger$
$\mathrm{O}(18 B)$	0.7911 (20)	$0 \cdot 1366$ (28)	$0 \cdot 1804$ (18)	9 (5)
$\mathrm{O}(19)$	$0 \cdot 6275$ (12)	0.2753 (15)	0.2509 (10)	24 (3)
$\mathrm{O}(21)$	0.5601 (12)	0.3915 (18)	0.4210 (12)	15 (3)
S(22)	$0 \cdot 5565$ (6)	$0 \cdot 2496$ (6)	0.4962 (5)	55*
$\mathrm{O}(23)$	0.6539 (17)	$0 \cdot 1402$ (21)	0.4917 (15)	47 (5)
$\mathrm{O}(24)$	0.5381 (14)	0.3013 (18)	0.6067 (13)	37 (4)
O (25)	0.4310 (11)	$0 \cdot 1450$ (15)	0.4270 (11)	33 (3)
S(26)	$0 \cdot 3046$ (8)	0.2321 (11)	0.3515 (7)	28*
O(27)	0.2236 (14)	$0 \cdot 1065$ (20)	$0 \cdot 3257$ (13)	27 (4)
$\mathrm{O}(28)$	0.2789 (15)	0.3623 (22)	0.4145 (12)	54 (4)
$\mathrm{O}(29)$	0.3578 (12)	$0 \cdot 2977$ (16)	0.2571 (10)	26 (3)

[^1]Hamilton (1965) R-factor test indicates that the non-centrosymmmetric solution is favoured over the centrosymmetric at the 99% confidence level. The test is not entirely valid as it relies on there being only random errors which is not the case here with approximate twofold crystallographic symmetry, but we still believe that the non-centrosymmetric solution is the better since it successfully removes the disorder from part (2) of the molecule and also does not produce any unreasonable contacts. Results quoted in the tables and Discussion are for the non-centrosymmetric solution (the centrosymmetric values are similar but have lower standard errors). The quantity minimized was $\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$ with $w=\sigma_{F}^{-2}$. Neutral-atom scattering factors and anomalous-dispersion corrections for Te and S were from International Tables for X-ray Crystallography (1974).* Final positional parameters are given in Table 1.

[^2]Discussion. Bond distances and angles are given in Table 2. Two pyrosulphate ligands are chelated to each Te atom through terminal O atoms. The $\mathrm{O}-\mathrm{Te}-\mathrm{O}$ angles indicate the presence of a stereoactive lone pair on the Te atom. The lone pair and the four O atoms form a distorted ψ-trigonal-bipyramidal configuration with the lone pair, $\mathrm{O}(19)$ and $\mathrm{O}(29)$ constituting the equatorial plane and $O(11)$ and $O(21)$ the axes. The $\mathrm{Te}-\mathrm{O}$ (ax) distances are equal [2.06 (2) and 2.07 (1) \AA] and longer than the $\mathrm{Te}-\mathrm{O}(\mathrm{eq})$ bonds $[1.96$ (1) and 1.96 (1) \AA]. Angle $\mathrm{O}(19)-\mathrm{Te}-\mathrm{O}(29)$ is 94.8 (5) and $\mathrm{O}(11)-\mathrm{Te}-\mathrm{O}(21) \quad 157.4(3)^{\circ}$, showing the strong valence-shell-repulsion effect of the lone pair, though the latter is possibly also affected by the constraint of the bidentate pyrosulphate ligands.

Most $\mathrm{Te}^{\mathrm{IV}}-\mathrm{O}$ complexes have structures based on a trigonal bipyramid (Zemann, 1971), although in some cases one of the axial $\mathrm{Te}-\mathrm{O}$ distances is much longer than the other [2.98 and $1.88 \AA$ in $\mathrm{CuTeO}_{3} .2 \mathrm{H}_{2} \mathrm{O}$ (Zemann \& Zemann, 1962)]. $\mathrm{Te}\left(\mathrm{S}_{2} \mathrm{O}_{7}\right)_{2}$ most closely resembles the compounds at the top of Zemann's Table 1 where both $\mathrm{Te}-\mathrm{O}(\mathrm{ax})$ bonds are reasonably short, in particular tetragonal TeO_{2} (Lindqvist, 1968), $\mathrm{Ti}\left(\mathrm{Te}_{3} \mathrm{O}_{8}\right)$ (Meunier \& Galy, 1971) and $\mathrm{Te}_{2} \mathrm{O}_{5}$ (Lindqvist \& Moret, 1973) which have similar $\mathrm{O}-\mathrm{Te}-\mathrm{O}$ angles and $\mathrm{Te}-\mathrm{O}(\mathrm{ax})$ bonds of equal length. In $\mathrm{Te}\left(\mathrm{S}_{2} \mathrm{O}_{7}\right)_{2}$, however, the difference between $\mathrm{Te}-\mathrm{O}(\mathrm{ax})$ and $\mathrm{Te}-\mathrm{O}(\mathrm{eq})$ bond lengths is much less than in the other three.

Besides the major $\mathrm{Te}-\mathrm{O}$ bonding there are also four longer $\mathrm{Te} \cdots \mathrm{O}$ contacts to $\mathrm{O}(17 A)\left(x-\frac{1}{2}, y+\frac{1}{2}, z\right)$

Table 2. Bond distances (\AA) and angles (${ }^{\circ}$) for $\mathrm{Te}\left(\mathrm{S}_{2} \mathrm{O}_{7}\right)_{2}$

Where appropriate the value for orientation A precedes that for orientation B.

$\mathrm{Te} \cdot \mathrm{O}(111)$	$2.06(2)$	$\mathrm{Te}-\mathrm{O}(21)$	$2.07(1)$
$\mathrm{Te}-\mathrm{O}(19)$	$1.96(1)$	$\mathrm{Te}-\mathrm{O}(29)$	$1.96(1)$
$\mathrm{S}(12) \mathrm{O}(11)$	$1.50(2)$	$\mathrm{S}(22) \mathrm{O}(21)$	$1.52(2)$
$\mathrm{S}(16)-\mathrm{O}(19)$	$1.57(1) .1 .48(1)$	$\mathrm{S}(26) \mathrm{O}(29)$	$1.48(1)$
$\mathrm{S}(12)-\mathrm{O}(15)$	$1.65(2) .1 .74(2)$	$\mathrm{S}(22)-\mathrm{O}(25)$	$1.67(1)$
$\mathrm{S}(16) \ldots \mathrm{O}(15)$	$1.51(2) .1 .71(2)$	$\mathrm{S}(26)-\mathrm{O}(25)$	$1.63(1)$
$\mathrm{S}(12) \mathrm{O}(13)$	$1.45(2)$	$\mathrm{S}(22) \mathrm{O}(23)$	$1.40(2)$
$\mathrm{S}(2) \mathrm{O}(4)$	$1.37(2)$	$\mathrm{S}(22)-\mathrm{O}(24)$	$1.45(2)$
$\mathrm{S}(16) \mathrm{O}(17)$	$1.53(2) .1 .39(2)$	$\mathrm{S}(26) \mathrm{O}(27)$	$1.37(2)$
$\mathrm{S}(16) \mathrm{O}(18)$	$1.40(3) .1 .47(2)$	$\mathrm{S}(26) \mathrm{O}(28)$	$1.40(2)$

$\mathrm{O}(11) \mathrm{Te}-\mathrm{O}(21)$	157.4 (3)
$\mathrm{O}(11) \mathrm{Te} \mathrm{O}(19)$	84.7 (5)
$\mathrm{O}(11) \mathrm{Te}-\mathrm{O}(29)$	83.5 (6)
Te O(11)-S(12)	134.7 (10)
$\mathrm{Te} \cdot \mathrm{O}(19)$-S(16)	124.6 (8). 137.2 (8)
$\mathrm{O}(11)-\mathrm{S}(12)-\mathrm{O}(15)$	102 (1). 93 (1)
$\mathrm{O}(19)-\mathrm{S}(16) \mathrm{O}(15)$	108 (1). 105 (1)
$\mathrm{O}(11) \mathrm{S}(12)-\mathrm{O}(13)$	114 (1)
$\mathrm{O}(11) \mathrm{S}(12) \cdot \mathrm{O}(14)$	111(1)
$\mathrm{O}(13) \mathrm{S}(12) \mathrm{O}(15)$	104 (1), 121 (1)
$\mathrm{O}(14) \cdot \mathrm{S}(12) \cdot \mathrm{O}(15)$	105 (1). 95 (1)
$\mathrm{O}(15)-\mathrm{S}(16)-\mathrm{O}(17)$	106 (1). 120 (1)
$\mathrm{O}(15) \mathrm{S}(16) \mathrm{O}(18)$	107 (1), 98 (1)
$\mathrm{O}(17)-\mathrm{S}(16) \mathrm{O}(19)$	99 (1). 97 (1)
$\mathrm{O}(18)-\mathrm{S}(16) \mathrm{O}(19)$	107 (1). 109 (1)
$\mathrm{O}(13) \mathrm{S}(12) \mathrm{O}(14)$	119 (1)
$\mathrm{O}(17) \mathrm{S}(16)-\mathrm{O}(18)$	128 (1).127(1)
$\mathrm{S}(12)-\mathrm{O}(15)-\mathrm{S}(16)$	127(1). 109 (1)

$\mathrm{O}(19)-\mathrm{Te}-\mathrm{O}(29)$	$94.8(5)$
$\mathrm{O}(21) \mathrm{Te}-\mathrm{O}(29)$	$84.6(5)$
$\mathrm{O}(2)-\mathrm{Te}-\mathrm{O}(19)$	$77.2(5)$
$\mathrm{Te} \cdot \mathrm{O}(21)-\mathrm{S}(22)$	$135.9(9)$
$\mathrm{Te}-\mathrm{O}(29) \cdot \mathrm{S}(26)$	$133.7(8)$
$\mathrm{O}(21)-\mathrm{S}(22)-\mathrm{O}(25)$	$104(1)$
$\mathrm{O}(29)-\mathrm{S}(26)-\mathrm{O}(25)$	$101(1)$
$\mathrm{O}(211)-\mathrm{S}(2)-\mathrm{O}(23)$	$113(1)$
$\mathrm{O}(21) \mathrm{S}(22)-\mathrm{O}(24)$	$109(1)$
$\mathrm{O}(23)-\mathrm{S}(22) \cdots(25)$	$98(1)$
$\mathrm{O}(24)-\mathrm{S}(22)-\mathrm{O}(25)$	$112(1)$
$\mathrm{O}(25)-\mathrm{S}(26)-\mathrm{O}(27)$	$100(1)$
$\mathrm{O}(25)-\mathrm{S}(26)-\mathrm{O}(28)$	$107(1)$
$\mathrm{O}(27)-\mathrm{S}(26)-\mathrm{O}(29)$	$116(1)$
$\mathrm{O}(28)-\mathrm{S}(26)-\mathrm{O}(29)$	$105(1)$
$\mathrm{O}(23)-\mathrm{S}(22)-\mathrm{O}(24)$	$119(1)$
$\mathrm{O}(27)-\mathrm{S}(26) \mathrm{O}(28)$	$124(1)$
$\mathrm{S}(22)-\mathrm{O}(25) \mathrm{S}(26)$	$121(1)$

Fig. 1. ORTEP diagram (Johnson, 1965) of tellurium pyrosulphate projected down the approximate twofold axis showing the atom labelling and the disorder in ligand (1). Longer $\mathrm{Te} \cdots \mathrm{O}$ contacts are drawn with thin lines. Thermal ellipsoids indicate 50% probability levels.
$2 \cdot 73$ (2) or $\mathrm{O}(18 B)\left(x-\frac{1}{2}, y+\frac{1}{2}, z\right) 2 \cdot 76(2), \mathrm{O}(27)(x$ $\left.+\frac{1}{2}, y+\frac{1}{2}, z\right) 2 \cdot 74(1), \mathrm{O}(24)\left(x, 1-y, z-\frac{1}{2}\right) 2 \cdot 87(2)$ and $\mathrm{O}(14)\left(x, 1-y, z+\frac{1}{2}\right) 3 \cdot 02$ (1) \AA. As can be seen in Fig. 1, these contacts are arranged in a staggered manner so as to minimize interaction with the O atoms of the coordination sphere and complete an irregular dodecahedron.

The bond lengths and angles within the pyrosulphate ligands could not be determined very accurately on account of the disorder outlined above. The values are in agreement with those obtained (Lynton \& Truter, 1960) for $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}$ [$\mathrm{S}-\mathrm{O}$ (bridging) 1.645 (5); $\mathrm{S}=\mathrm{O}$ (terminal) 1.437 (7) \AA; $\mathrm{S}-\mathrm{O}-\mathrm{S} 124.2(5)^{\circ} \mathrm{J}$.

We thank Drs E. J. Wells and C. R. Lassigne of this University for supplying the crystals and for helpful discussions. Financial aid in the form of an operating grant from the Natural Sciences and Engineering Research Council of Canada is also acknowledged.

References

Hamilton, W. C. (1965). Acta Crist. 18, 502-510.
International Tables for X-ray Cry'stallography' (1967). Vol. II. Birmingham: Kynoch Press.

International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.

Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee.
LindQvist. O. (1968). Acta Chem. Scand. 22. 977-982.
Lindqvist, O. \& Moret, J. (1973). Acta Cryist. B29, 643-650.
Lynton, H. \& Truter, M. R. (1960). J. Chem. Soc. pp. 5112-5118.
Meunier, G. \& Galy, J. (1971). Acta Cry'st. B27. 602-608. Zemann, A. \& Zemann, J. (1962). Acta Crlist. 15, 698-702. Zemann, J. (1971). Monatsh. Chem. 102, 1209-1216.

Acta Cryst. (1981). B37, 220-222

The Structure of Calcium Orthotellurate

By D. Hottentot and B. O. Loopstra
Laboratory for Crystallography, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands

(Received 13 August 1980; accepted 25 September 1980)

Abstract

Ca}_{3} \mathrm{TeO}_{6}\), monoclinic, $P 2_{1} / n, a=5.5730$ (6), $b=5.7964$ (2), $c=8.0113$ (3) $\AA, \beta=90.24(1)^{\circ}, V=$ $258.8 \AA^{3}, Z=2, D_{c}=4.41 \mathrm{Mg} \mathrm{m}^{-3}$. Final $R=0.041$ for 583 reflections. A single-crystal study confirms that the compound is isostructural with cryolite, $\alpha-\mathrm{Na}_{3} \mathrm{AlF}_{6}$. The $\mathrm{Te}-\mathrm{O}$ octahedron is regular, as is usual for $\mathrm{Te}^{\mathrm{VI}}$ oxides.

Introduction. $\mathrm{Ca}_{3} \mathrm{TeO}_{6}$ has been known since 1956 (Merz, 1956) but so far only polycrystalline material has been available. Because of this and the fact that its monoclinic angle is close to 90°, the structure has been
described as isomorphous both with cryolite, $\mathrm{Na}_{3} \mathrm{AlF}_{6}$, space group $P 2_{1} / n$ (Naray-Szabo \& Sasvári, 1938), and with $\mathrm{Ca}_{3} \mathrm{UO}_{6}$, space group $P 2_{1}$ (Rietveld, 1966; Loopstra \& Rietveld, 1969). Baglio \& Natansohn (1969) conclude from powder indexing that the space group is $P 2_{1}$ with $a=5.794, b=5.575, c=8.020 \AA$, $\beta=90 \cdot 29^{\circ}$. Trömel (1972) points out that the same powder data can be described by $a=5.575, b=5.773$, $c=8.006 \AA, \beta=90.23^{\circ}$.

This description is in accordance with the observation that for cryolite and related structures b is smaller than a. With these cell constants all indices

[^0]: (c) 1981 International Union of Crystallography

[^1]: * Equivalent isotropic thermal parameters given by $U=\frac{1}{3}$ trace ©.
 \dagger Thermal parameters for $\mathrm{O}(18 A)$ not refined - see text.

[^2]: * Lists of structure factors and anisotropic temperature factors have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 35573 (10 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

